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Abstract   
 
A rigorous solution is presented for the problem of diffraction of acoustic waves emanating from a ring 

source by a semi-infinite cylindrical pipe with a partial exterior impedance. By the application of 

Fourier-transform technique, the diffraction problem is described by a modified Wiener-Hopf equation 

of the third kind. By performing the Wiener-Hopf factorization and decomposition procedure, the 

modified Wiener-Hopf equation is reduced to a pair of coupled Fredholm integral equations of the 

second kind and then solved by iterations. 
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1. Introduction 

 

In recent years, air transportation, especially in crowded cities, becomes more important and the 

number of the airports increase every day. Since, the airports are built nearby the city centers, the 

people who live next to airports, experience lots of noise pollution. Both the reduction of the 

people’s live quality and the requirement of the EU standards have made those problems very 

significant to be solved. Therefore scientists have focused on reducing the scope of sound in 

modern aircraft jet and turbofan engines, etc. In this context they are investigating the diffraction 

of acoustic waves by the pipes. 

 Levine and Schwinger was the first to apply Wiener-Hopf method [1] which is a powerful 

technique for the diffraction problem, to the study of sound radiation from an unflanged rigid 

cylindrical duct [2]. For lined pipes, scientific studies show that there is a potential benefit of an 

acoustic liners for noise reduction. Rawlins who first obtained the exact solution for the problem 

of radiation of sound waves from a semi-infinite rigid duct with an acoustically absorbing 

internal surface [3]. He proved that acoustic liners are one of the effective method of reducing 

noise from ducts. Demir and Buyukaksoy solved the same problem with partial lining [4]. In their 

work, a solution involves a set of infinitely many coefficients satisfying an infinite system of 

linear algebraic equation. The effect of parameters, such as pipe radius, internal surface 

impedance, etc. on the diffracted phenomenon were shown graphically. Later, Buyukaksoy and 

Polat considered the diffraction of acoustic waves by a semi-infinite cylindrical impedance pipe 

of certain wall thickness [5]. They analyzed the effect of different linings from inside, outside, 

end side and wall thickness with graphics. In both studies above, a hybrid method was applied. 

Then, Tiryakioglu and Demir examined the problem of diffraction of waves from a semi-infinite 
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rigid cylindrical duct with external impedance surface [6]. Here the ring source which is located 

out of the pipe was used to illuminate the cylindrical duct. An analytical solution is derived by 

solving the Wiener-Hopf equation. 

 In this paper the diffraction of acoustic waves emanating from a ring source by a semi-

infinite cylindrical pipe with a partial lining on the outer surface is investigated rigorously 

through the Wiener-Hopf technique. The pipe which walls are assumed to be infinitely thin, 

represents the nozzle of the jet engine and illuminating nozzle by a ring source. By the 

application of the Fourier transform technique, the related boundary value problem is formulated 

as a modified Wiener-Hopf equation of the third kind and then reduced to a pair of simultaneous 

Fredholm integral equations of the second kind which are susceptible to a treatment by iterations. 

The solution involves branch-cut integrals with unknown integrands which have to be performed 

numerically. 

 

 

2. Analysis 

 

2.1. Formulation of the Problem  

 

We consider the diffraction of acoustic waves by a semi-infinite cylindrical pipe. The geometry 

of the problem is considered as a mathematical model of aircraft engine (Figure 1).  

 

 

 
 

Figure 1. Sketch of a turbofan aero-engine 

 

The pipe walls are assumed to be infinitely thin and they occupy the region {𝑟 = 𝑎, 𝑧 ∈ (−∞, 𝑙)} 

illuminated by a ring source located at 𝑟 = 𝑏 > 𝑎, 𝑧 = 0 (Figure 2). The part 𝑟 = 𝑎, 𝑧 ∈ (0, 𝑙) of 

its exterior surface is assumed to be treated by an acoustically absorbent lining which is denoted 

by 𝑍, while the other parts of the pipe are assumed to be rigid. We introduce a scalar potential 

𝜓(𝑟, 𝑧, 𝑡) which defines the acoustic pressure and velocity by 𝑝 = −𝜌₀(𝜕/𝜕𝑡)𝜓  and �⃗� = 𝑔𝑟𝑎𝑑𝜓 

respectively, where 𝜌₀ is the density of the undisturbed medium. 
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Figure 2. Geometry of the problem 

 

From the symmetry of the geometry of the problem and of the ring source, the total field will be 

independent of 𝜃 everywhere in circular cylindrical coordinate system (𝑟, 𝜃, 𝑧). 

 For analysis purposes, it is convenient to express the total field as follows: 

 

𝜓𝑇(𝑟, 𝑧, 𝑡) = {

𝜓₁(𝑟, 𝑧)𝑒𝑥𝑝(−𝑖𝜔𝑡)

𝜓2(𝑟, 𝑧)𝑒𝑥𝑝(−𝑖𝜔𝑡)
𝜓₃(𝑟, 𝑧)𝑒𝑥𝑝(−𝑖𝜔𝑡)

   ,   
   ,   
   ,   

𝑟 > 𝑏
𝑟 ∈ (𝑎, 𝑏)

𝑟 ∈ (0, 𝑎)

    ,   𝑧 ∈ (−∞, ∞) 
   ,   𝑧 ∈ (−∞, ∞)

   ,   𝑧 ∈ (−∞, ∞)
                          (1) 

 

where 𝜔 = 2𝜋𝑓 is the angular frequency. Time dependence is assumed to be 𝑒−𝑖𝜔𝑡 and 

suppressed throughout this work. 
 

2.2. Reduction to a Modified Wiener-Hopf Equation 

 

The unknown velocity potentials 𝜓₁(𝑟, 𝑧), 𝜓₂(𝑟, 𝑧) and 𝜓₃(𝑟, 𝑧) satisfy the Helmholtz equation 

for 𝑧 ∈ (−∞,∞). 

[
1

𝑟

∂

∂r
(𝑟

∂

∂r
) +

∂2

∂z2
+ k2] 𝜓1,2,3(𝑟, 𝑧) = 0                                               (2) 

 

By taking Fourier transform of these equations, one can obtain the following integral forms: 

 

𝜓1(𝑟, 𝑧) =
𝑘

2𝜋
∫ 𝐴(𝑢)𝐻0

(1)(𝜆𝑘𝑟)𝑒−𝑖𝑢𝑘𝑧𝑑𝑢

𝐿

                                                          (3) 

 

𝜓2(𝑟, 𝑧) =
𝑘

2𝜋
∫ [𝐵(𝑢)𝐽₀(𝜆𝑘𝑟) + 𝐶(𝑢)𝑌₀(𝜆𝑘𝑟)]𝑒−𝑖𝑢𝑘𝑧𝑑𝑢 

𝐿

                             (4) 
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𝜓3(𝑟, 𝑧) =
𝑘

2𝜋
∫ 𝐷(𝑢)𝐽0(𝜆𝑘𝑟)𝑒−𝑖𝑢𝑘𝑧𝑑𝑢

𝐿

                                                              (5) 

 

where 𝐿 is a suitable inverse Fourier transform integration contour along or near to the real axis 

in the complex 𝑢 − domain (Figure 3). 

 

 
 

Figure 3. Complex 𝑢 − plane with Fourier contour and branch cut 

 

𝐽₀ and 𝑌₀ are the Bessel and Neumann functions of order zero, 𝐻0
(1)

= 𝐽₀ + 𝑖𝑌₀ is the Hankel 

function of the first type. 𝜆 is a square root function which is defined as 

 

𝜆(𝑢) = √1 − 𝑢2                                                                   (6) 

 

Branch cuts for 𝜆 is taken on the line from 1 to ∞ and from −∞ to −1. We will assume that the 

surrounding medium is slightly lossy and k has small positive part. The lossless case can be 

obtained by letting 𝐼𝑚𝑘 → 0 at the end of the analysis.  

 From the following boundary conditions and relations of continuity, 

𝐴(𝑢), 𝐵(𝑢), 𝐶(𝑢) 𝑎𝑛𝑑 𝐷(𝑢) will be obtained. 

 
𝜕

𝜕𝑟
𝜓1(𝑏, 𝑧) −

𝜕

𝜕𝑟
𝜓2(𝑏, 𝑧) = 𝛿(𝑧 − 0)   ,   𝑧 ∈ (−∞, ∞)                                       (7) 

 

𝜓1(𝑏, 𝑧) = 𝜓2(𝑏, 𝑧)   ,   𝑧 ∈ (−∞, ∞)                                         (8) 

 
𝜕

𝜕𝑟
𝜓2(𝑎, 𝑧) =

𝑖𝑘

𝑍
𝜓2(𝑎, 𝑧)   ,   0 < 𝑧 < 𝑙                                          (9) 

 
𝜕

𝜕𝑟
𝜓2(𝑎, 𝑧) = 0   ,    𝑧 < 0                                                                (10) 
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𝜕

𝜕𝑟
𝜓3(𝑎, 𝑧) = 0   ,    𝑧 < 𝑙                                                                 (11) 

 
𝜕

𝜕𝑟
𝜓2(𝑎, 𝑧) =

𝜕

𝜕𝑟
𝜓3(𝑎, 𝑧) ,   𝑧 > 𝑙                                                  (12) 

 

𝜓2(𝑎, 𝑧) = 𝜓3(𝑎, 𝑧) ,   𝑧 > 𝑙                                                        (13) 
 

The spectral coefficients 𝐴(𝑢), 𝐵(𝑢) 𝑎𝑛𝑑 𝐶(𝑢) are related to each other by the definition of the 

ring source given in (7-8), the Fourier transform which give, 

 

𝜆𝑘𝐴(𝑢)𝐻1
(1)(𝜆𝑘𝑏) = 𝜆𝑘𝐵(𝑢)𝐽1(𝜆𝑘𝑏) + 𝜆𝑘𝐶(𝑢)𝑌1(𝜆𝑘𝑏) − 1                   (14) 

 

𝐴(𝑢)𝐻0
(1)(𝜆𝑘𝑏) = 𝐵(𝑢)𝐽0(𝜆𝑘𝑏) + 𝐶(𝑢)𝑌0(𝜆𝑘𝑏)                                     (15) 

 

The elimination of 𝐶(𝑢) between (14) and (15), then the elimination of 𝐵(𝑢), we can obtain the 

following coefficients 

𝐵(𝑢) = 𝐴(𝑢) +
𝜋𝑏

2
𝑌0(𝜆𝑘𝑏)                                                        (16) 

 

𝐶(𝑢) = 𝑖𝐴(𝑢) −
𝜋𝑏

2
𝐽0(𝜆𝑘𝑏)                                                        (17) 

 

Applying the boundary condition on 𝑟 = 𝑎, from (10) and (11) 

 

−𝐵(𝑢)𝜆𝑘𝐽1(𝜆𝑘𝑎) − 𝐶(𝑢)𝜆𝑘𝑌1(𝜆𝑘𝑎) =
𝑖𝑘

𝑍
𝑇(𝑢)+𝑒𝑖𝑢𝑘𝑙𝜙1

+(𝑢)                           (18) 

 

−𝐷(𝑢)𝜆𝑘𝐽1(𝜆𝑘𝑎) = 𝑒𝑖𝑢𝑘𝑙𝜙1
+(𝑢)                                                  (19) 

 

Continuity relations at 𝑟 = 𝑎 yields 

 

𝐷(𝑢)𝐽₀(𝜆𝑘𝑎) − 𝐵(𝑢)𝐽₀(𝜆𝑘𝑎) − 𝐶(𝑢)𝑌₀(𝜆𝑘𝑎) = 𝑒𝑖𝑢𝑘𝑙𝜙1
−(𝑢)                     (20) 

 

where 𝜙1
+(𝑢) 𝑎𝑛𝑑 𝜙1

−(𝑢) are analytic functions in the upper half plane (𝐼𝑚𝑢 > 0 𝑜𝑟 𝐼𝑚𝑢 =
0 𝑎𝑛𝑑 𝑅𝑒𝑢 > 0) and in the lower half plane (𝐼𝑚𝑢 < 0 𝑜𝑟 𝐼𝑚𝑢 = 0 𝑎𝑛𝑑 𝑅𝑒𝑢 < 0), respectively, 

while 𝑇(𝑢) is an entire function. 

 

𝜙1
+(𝑢) = ∫

𝜕

𝜕𝑟
𝜓2(𝑎, 𝑧)

∞

𝑙

𝑒𝑖𝑢𝑘(𝑧−𝑙)𝑑𝑧                                                              (21) 
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𝜙1
−(𝑢) = ∫[𝜓₃(𝑎, 𝑧) − 𝜓2(𝑎, 𝑧)]

𝑙

−∞

𝑒𝑖𝑢𝑘(𝑧−𝑙)𝑑𝑧                                           (22) 

 

𝑇(𝑢) = ∫ 𝜓2(𝑎, 𝑧)𝑒𝑖𝑢𝑘𝑧𝑑𝑧

𝑙

0

                                                                           (23) 

 

From (18) we obtain 

 

𝐴(𝑢) = −
1

𝜆𝑘𝐻1
(1)(𝜆𝑘𝑎)

{
𝑖𝑘

𝑍
𝑇(𝑢) + 𝑒𝑖𝑢𝑘𝑙𝜙1

+(𝑢) +
𝜆𝑘𝜋𝑏

2
[𝐽₁(𝜆𝑘𝑎)𝑌₀(𝜆𝑘𝑏) − 𝐽₀(𝜆𝑘𝑏)𝑌₁(𝜆𝑘𝑎)]} 

          (24) 

 

By substituting 𝐵(𝑢), 𝐶(𝑢) and 𝐷(𝑢) in (20) we get the following Modified Wiener-Hopf 

Equation (MWHE) of the third kind. 

 

𝜙1
+(𝑢)𝑀(𝑢) + 𝑇(𝑢)𝑁(𝑢)𝑒−𝑖𝑢𝑘𝑙 +

𝑏

𝑎

𝐻0
(1)

(𝜆𝑘𝑏)

𝜆𝑘𝐻1
(1)

(𝜆𝑘𝑏)
𝑒−𝑖𝑢𝑘𝑙 = 𝜙1

−(𝑢)                     (25) 

where 

𝑀(𝑢) =
𝐻0

(1)
(𝜆𝑘𝑎)

𝜆𝑘𝐻1
(1)

(𝜆𝑘𝑎)
−

𝐽0(𝜆𝑘𝑎)

𝜆𝑘𝐽₁(𝜆𝑘𝑎)
                                                   (26) 

 

𝑁(𝑢) =
(𝑖/𝑍)𝐻0

(1)
(𝜆𝑘𝑎)

𝜆𝐻1
(1)

(𝜆𝑘𝑎)
                                                                      (27) 

  

 

2.3. Approximate Solution of the Modified Wiener-Hopf Equation 

 

By using the factorization and decomposition procedures, together with the Liouville theorem, 

the modified Wiener-Hopf equation in (25) can be reduced to the following system of Fredholm 

integral equations of the second kind: 

 

𝜙1
+(𝑢)𝑀+(𝑢) = −

1

2𝜋𝑖

𝑏

𝑎
∫

𝐻0
(1)

(𝜆𝑘𝑏)𝑀−(𝜏)𝑒−𝑖𝜏𝑘𝑙

𝜆𝑘𝐻1
(1)

(𝜆𝑘𝑎)(𝜏 − 𝑢)
𝑑𝜏 −

1

2𝜋𝑖
𝐿+

∫
𝑇(𝜏)𝑁(𝜏)𝑀−(𝜏)𝑒−𝑖𝜏𝑘𝑙

𝜏 − 𝑢
𝑑𝜏

𝐿+

   (28) 

 

𝑇(𝑢)

𝑁−(𝑢)
𝑒−𝑖𝑢𝑘𝑙 =

1

2𝜋𝑖

𝑏

𝑎
∫

𝐻0
(1)

(𝜆𝑘𝑏)𝑒−𝑖𝜏𝑘𝑙

𝜆𝑘𝐻1
(1)

(𝜆𝑘𝑎)𝑁+(𝜏)(𝜏 − 𝑢)
𝑑𝜏 +

1

2𝜋𝑖
𝐿−

∫
𝜙1

+(𝜏)𝑀(𝜏)

𝑁+(𝜏)(𝜏 − 𝑢)
𝑑𝜏

𝐿−
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−
1

2𝜋𝑖
∫

𝜙1
−(𝜏)

𝑁+(𝜏)(𝜏 − 𝑢)
𝑑𝜏

𝐿−

       (29) 

 

𝜙1
−(𝜏) = −

1

2𝜋𝑖

𝑏

𝑎
∫

𝐻0
(1)(𝜆𝑘𝑏)𝑒−𝑖𝜏𝑘𝑙

𝜆𝑘𝐻1
(1)(𝜆𝑘𝑎)(𝜏 − 𝑢)

𝑑𝜏 −
1

2𝜋𝑖
𝐿−

∫
𝜙1

+(𝜏)𝑀(𝜏)

𝜏 − 𝑢
𝑑𝜏

𝐿−

 

−
1

2𝜋𝑖
∫

𝑇(𝜏)𝑁(𝜏)𝑒−𝑖𝜏𝑘𝑙

𝜏 − 𝑢
𝑑𝜏

𝐿−

           (30) 

 

where 𝑀+(𝑢), 𝑁+(𝑢) and 𝑀−(𝑢), 𝑁−(𝑢) are the split functions, analytic and free of zeros in the 

upper and lower halves of the complex 𝑢 − plane, respectively, resulting from the Wiener-Hopf 

factorization of 𝑀(𝑢) and 𝑁(𝑢) which are given by (26) and (27), in the following form: 

 

𝑀(𝑢) =
𝑀+(𝑢)

𝑀−(𝑢)
     ,     𝑁(𝑢) =

𝑁+(𝑢)

𝑁−(𝑢)
                                            (31,32) 

 

Here the explicit forms for 𝑀+(𝑢), 𝑀−(𝑢) and 𝑁+(𝑢), 𝑁−(𝑢) can be obtained as is done in [7] 

and they will be calculated numerically. For large argument, the coupled system of Fredholm 

integral equations of the second kind in (28) - (30), is susceptible to a treatment by iterations. 

 

𝜙1
+(𝑢) = 𝜙1,1

+ (𝑢) + 𝜙1,2
+ (𝑢) + ⋯                                                 (33) 

 

𝜙1
−(𝑢) = 𝜙1,1

− (𝑢) + 𝜙1,2
− (𝑢) + ⋯                                                 (34) 

 

𝑇(𝑢) = 𝑇1(𝑢) + 𝑇2(𝑢) + ⋯                                                        (35) 
 

From the first iterations, we get 

𝜙1,1
+ (𝑢)𝑀+(𝑢) = −

1

2𝜋𝑖

𝑏

𝑎
∫

𝐻0
(1)

(𝜆𝑘𝑏)𝑀−(𝜏)𝑒−𝑖𝜏𝑘𝑙

𝜆𝑘𝐻1
(1)

(𝜆𝑘𝑎)(𝜏 − 𝑢)
𝑑𝜏

𝐿+

= 𝐼1(𝑢)                      (36) 

𝑇1(𝑢)

𝑁−(𝑢)
𝑒−𝑖𝑢𝑘𝑙 =

1

2𝜋𝑖

𝑏

𝑎
∫

𝐻0
(1)

(𝜆𝑘𝑏)𝑒−𝑖𝜏𝑘𝑙

𝜆𝑘𝐻1
(1)

(𝜆𝑘𝑎)𝑁+(𝜏)(𝜏 − 𝑢)
𝑑𝜏

𝐿−

= 𝐼2(𝑢)                      (37) 

and 

𝜙1,1
− (𝜏) = −

1

2𝜋𝑖

𝑏

𝑎
∫

𝐻0
(1)(𝜆𝑘𝑏)𝑒−𝑖𝜏𝑘𝑙

𝜆𝑘𝐻1
(1)(𝜆𝑘𝑎)(𝜏 − 𝑢)

𝑑𝜏

𝐿−

= 𝐼3(𝑢)                      (38) 

 

while the second iteration gives 
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𝜙1,2
+ (𝑢)𝑀+(𝑢) = −

1

2𝜋𝑖
∫

𝐼2(𝜏)𝑁−(𝜏)𝑀−(𝜏)𝑁(𝜏)

𝜏 − 𝑢
𝑑𝜏

𝐿+

= 𝐽1(𝑢)                       (39) 

and 

𝑇2(𝑢)

𝑁−(𝑢)
𝑒−𝑖𝑢𝑘𝑙 =

1

2𝜋𝑖
∫

𝐼1(𝜏)𝑀(𝜏)

𝑀+(𝜏)𝑁+(𝜏)(𝜏 − 𝑢)
𝑑𝜏 −

1

2𝜋𝑖
∫

𝐼3(𝑢)

𝑁(𝜏)𝑁−(𝜏)(𝜏 − 𝑢)
𝑑𝜏

𝐿−

= 𝐽2(𝑢)

𝐿−

  (40) 

 

Now, the approximate solution of the MWHE reads: 

 

𝜙1
+(𝑢)𝑀+(𝑢) = 𝐼1(𝑢) + 𝐽1(𝑢)                                                             (41) 

𝑇(𝑢)

𝑁−(𝑢)
𝑒−𝑖𝑢𝑘𝑙 = 𝐼2(𝑢) + 𝐽2(𝑢)                                                             (42) 

The integral given by (36) can be evaluated by means of the steepest-descent method. Using the 

asymptotic expansion of Hankel's functions for large argument and making the following 

substitutions, one can easily obtained the integral. 

 

𝜏 = −𝑐𝑜𝑠𝜉     ,     𝑏 − 𝑎 = 𝑅0𝑠𝑖𝑛𝜃0     ,     𝑙 = 𝑅0𝑐𝑜𝑠𝜃0                               (43) 

 

Similar way is valid for  𝐼2(𝑢) and 𝐼3(𝑢) which are given by (37), (38). For (39) and (40), these 

integrals can only be obtained numerically. First the integration line 𝐿± can be deformed onto the 

branch-cut, then the integrals can be evaluated by the help of Cauchy theorem. 

 

 

3. Far Field 

 

The total field in the region 𝑟 > 𝑏 can be obtained from (3) and (24) 

 

𝜓1(𝑟, 𝑧) = −
1

2𝜋
∫

𝜙1
+(𝑢)

𝜆𝐻1
(1)(𝜆𝑘𝑎)

𝐿

𝐻0
(1)

(𝜆𝑘𝑟)𝑒−𝑖𝑢𝑘(𝑧−𝑙)𝑑𝑢 

−
𝑘

2𝜋
∫ [

(𝑖/𝑍)𝑇(𝑢)

𝜆𝐻1
(1)(𝜆𝑘𝑎)

+
𝜋𝑏

2𝐻1
(1)(𝜆𝑘𝑎)

[𝐽₁(𝜆𝑘𝑎)𝑌0(𝜆𝑘𝑏) − 𝐽₀(𝜆𝑘𝑏)𝑌₁(𝜆𝑘𝑎)]] 𝐻0
(1)(𝜆𝑘𝑟)𝑒−𝑖𝑢𝑘𝑧𝑑𝑢

𝐿

 

(44) 

 

where 𝐿 is the inverse Fourier transform contour. Utilizing the asymptotic expansion of 

𝐻0
(1)(𝜆𝑘𝑟) valid for 𝑘𝑟 ≫ 1 

𝐻0
(1)(𝜆𝑘𝑟)~√

2

𝜋𝜆𝑘𝑟
𝑒𝑖(𝜆𝑘𝑟−𝜋/4)                                                     (45) 
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and using the saddle point technique, we get 

 

𝜓1(𝑟, 𝑧)~
𝑖

𝜋
[

𝜙1
+(− cos θ1)

sin θ1 𝐻1
(1)(𝑘𝑎 sin θ1)

]
𝑒𝑖𝑘𝑅1

𝑘𝑅1
+

𝑖

𝜋
[

(𝑖𝑘/𝑍)𝑇(− cos θ2)

sin θ2 𝐻1
(1)(𝑘𝑎 sin θ2)

−
𝜋𝑘𝑏

2𝐻1
(1)(𝑘𝑎 sin θ2)

 

 

× [𝐽₁(𝑘𝑎 sin θ2)𝑌0(𝑘𝑏 sin θ2) − 𝐽₀(𝑘𝑏 sin θ2)𝑌₁(𝑘𝑎 sin θ2)]]
𝑒𝑖𝑘𝑅2

𝑘𝑅2
    (46) 

where 𝑅1, θ1 and 𝑅2, θ2 are the spherical coordinates defined by 

 

𝑟 = 𝑅1𝑠𝑖𝑛θ1     ,     z − l = 𝑅1𝑐𝑜𝑠θ1                                                (47) 
and 

𝑟 = 𝑅2𝑠𝑖𝑛θ2     ,     z = 𝑅2𝑐𝑜𝑠θ2                                                      (48) 

as shown in Figure 4. 

 

 
Figure 4. Spherical coordinates 

 

4. Conclusions 

 

This study analyzes the diffraction of acoustic waves emanating from a ring source by a rigid 

semi-infinite pipe whose outer surface is treated by an acoustically absorbing material of finite 

length. This problem is more complicated due to partial lining of the exterior surface. To 

overcome the additional difficulty caused by the finite impedance discontinuity, the problem was 

first reduced to a system of Fredholm integral equations of the second kind and then solved 

approximately by iterations. 

 In forthcoming study, to a better understanding the effect of partial lining on the diffracted 

field, numerical calculations and graphics are going to be obtained. 
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